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Abstract. When the differential equation of heat conduction is replaced by the 
implicit difference analog, one is led to the solution of Ay = b where A is a tri- 
diagonal matrix whose elements on the principal diagonal are = 2 + 2r and whose 
elements off the principal diagonal are = -r. 

The system of equations may be solved by the following algorithm: 

13k = u = r ok-1~, i31 = u1 ; Yk = Zk = (bk + rZk-l)3k, zi = 

Yk = Zk -kYk+l, y M = ZM. 

An upper bound of the round-off errors in the computed values of the Yk'S is ob- 
tained. An actual test case showed that the theoretical upper bound is about four 
times larger than the true round-off error. Moreover, the theoretical upper bound 
does not seem to vary appreciably with r. 

When the differential equation of heat conduction 

OT a92T 
AT aX2 O _ x _Oa, t > O 

is replaced by the "implicit" difference analog 

Tm~n+i- Tmin __ ______T 

At = 2(Tx)2 [Tm-ln+l -2Tm,n+1 + Tm+ln+l + Tm-l,n - 2Tm,n + Tm+l,n] 

a 
m = 1, 2, 3,** M, Ax M+1 

or 

(2 + 2r)Tmn+l - r(Tmi1n+1 + Tm+in+l) = (2- 2r) Tmn 

+ r(Tmi,,n + Tmn+i,n) 

where Tm,n = T(mAx, nAt) and r = oAt/(Ax)2 it is a known fact that the difference 
scheme (1) is unconditionally stable [1]. If the desired solution is required to vanish 
on the boundaries x = 0 and x = a, the system of equations (1) may be written 
in the compact formt 

(1*) AT.+, = BTn = b (say) 

where A is a tridiagonal matrix whose elements on the principal diagonal are 
= 2 + 2r while the elements off the principal diagonal are = -r. 
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t When the temperature is prescribed on the boundaries, equation (1*) is essentially 

unchanged except for the fact that the first and last components of b are slightly altered. 
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The system of equations (1) may be easily solved by the following algorithm f2] 
2 

(2) o~f k U 1 k =1, 2, 3, * ,M; fl= U 

(3) Yk = -- k = 1- 2 3, * * M; 

(4) Zk (bk + rzkl) k =1, 2, 3, , M; z1 =b Zk 
3k U 

(5) Yk Zk - Yk Yk+1 k = 1, 2, 3, ... , M; YM =ZM 

where we have written u for 2 + 2r and we have denoted the components of T.+, 
by yk. The question arises: if the computations involved in the above algorithm 
are carried to p decimals (i.e., if products and ratios are rounded to p decimals) 
what is the upper bound of the round-off errors in the computed values of Yk? 

In the derivation of the desired upper bound we shall require a lower bound 
of the flk's and upper bounds of 7k , Zk and yk . If in (2) we put k = 2, 3, we get 

2 2 

12= U- r = 1 - r 

(6) r 

From the first of the above equations it is clear that 2 < f13. From the first two 
equations it follows that 

133-132 r2 
2 

< o. 

Thus 13 < 12 . Similarly it may be shown that 14 < 13, * *, 1k < Ok-1 . Thus the 
Sk5 form a monotonically decreasing sequence. It may be readily shown that the 

lower limit of the sequence, to be denoted by A*, is the larger of the two roots of 
the quadratic equation 

(7)2 (2 + 2r)x + 20 = O. 

Accordingly 

(8) 3*=1++r v'i7 r. 

From (3) it follows that I 7k I < r/3k . If then y* denotes an upper bound of I 7Yk 

we may put 

(9) 7*ry 
13j* 1 + r + V1 + 2r 

If in (4) we put k = 2, 3, *** and subsequently eliminate Z2, z3, ***, Zk-l we 
ultimately get 

bk rbk r2bk rk- b 
1k 1kk-i 1kk-i1k-2 1k1k-1 ... 131 
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whence 
b* 2 - 

k-1 +br+r+* )] b 1 b* 

13* 
where b* is the largest of the absolute values of bk. If then z* denotes an upper 
bound of I Zk I we may put 

(10) Z b- 

Finally from (5) we readily get 

YM = ZM 

Y M-1 = Z M-1 - 7M-1Z M 

YM-2 = ZM-2 - 7M-2ZM-1 + 'YM-22M-1ZM 

Y= Z1 -1Z2 + 71Y2Z3 * (-1) 712 **M 1Z1 . 

From the above system of equations it is clear that 

Y z*(1 + * +*2 ... + Y*M-1) 

( 11) __ __ __ __= ____ 1 = ___ ___ 

1-e* 1 *-r r (1*-r)2 r 

is an upper bound of the absolute values of the yk's. 
We now turn to the evaluation of upper bounds of the errors in the Vk'S, yk'S, 

Zk's and yk's. It will be convenient to denote by E(Ok) the absolute value of the 
error in 1k and by E*($) an upper bound of the errors in the Vk'S. A similar notation 
will be used for the k1'S, ZA's and yk's. From (2) we have 

2 2 

E(92) = 
r 

2E(91) + a _ E(3) + o 

where a = 2 X 10-' is the maximum round-off error. Similarly 
2 2 

E(,#-) 
r 

E(02) + 8a< 
r 

2E(02) + 8 
- 122 132 

- r12 [r2 E( 1#) + a1 + a 

( *2) 
2 

Proceeding in this manner we ultimately get 

E(O.) 
_ 1 + (r) + ( r2 

)]-2 + (5 
r2 

)m-1 E() 

1 
r2 8 *2 - r2 

4*2 
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where we have neglected the second term of the above inequality since r < *. 
Thus 

(12) E*(:) = 3 2 
3* 2 - r 

is an upper bound of the absolute values of the E(/3k)'s. 
Consider now the evaluation of E*(y). From (3) it follows that 

r 
E('Yk) = fl2E(flk) + a 

< a E*($) + a 

whence 

(13) /3^)= *(F + /=*2 /3*2 - 

= ( + a, r r2) 
2 

Consider next the evaluation of E*(z). From (4) we get: 

E(zk) = gl2{ (bk + rzk-l)E(/3k) + /k[E(bk) + rE(zk_1)I } + a 

(b* + rz*)E*(/) + p1 E*(b) + - E(zkl) + a 

1 14) E*z) = g3 * 2 - + 

ronteei naset the evaluation of E* ( ro ) we ultimately get 

(14) E*() E= z= \[1 b1+ /3 _ rk 2 / r/Z-)] + r 

(15) E*(z - /3* [ z*E(# + *b*/3 1 + E*(b)l 

If on the other hand we replace z*' in (14) by Z, the largest absolute value of the 
Zk 's we obtain 

(15*) A7b* = rz*- r + rZ E*(b) 

2 /3*2r(+/2 r)+/3- 

While the expression in (15) is an upper bound of the errors in the Zk'5, it is rea- 
sonable to refer to the expression in (15*) as the least upper bound of the errors 
in the Zk'5. 

Finally, consider the evaluation of E*(y). From (5) we get 

E(yk) = E(zk) + YkE(yk+l ) + yk+?E(7k) + 8 
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whence 

(16) E(yk) ? E*(z) + 7*E(ykl) + y*E*(sy) + S. 

Substituting for E*(z), y*, y* and E*(z) their expressions from (15), (9), (11), 
and (13) the last inequality becomes 

E (Yk) < * _ [ b*,3* 12 + E*(b) 

(17) L (3* 
- r) 03*2-r2)J 

P 
3- r 

+ b*#* 1 + r 
2 

+ 5 + X E(yk+l) 

Proceeding again as in the evaluation of E*(,), the last inequality ultimately yields: 

(18) E ) (3k-r{13*- r[1 + (* - r)(*2 - r2)1 

+ (b ) (1 + 32 )2)+ + (E* - r 

If, on the other hand, we substitute for E*(z) in (16) its expression from (15*) 
and replace y* by Y the largest of the absolute values of the Yk'S, while y* and 
E*(zy) are replaced by their expressions from (9) and (13), we obtain as the counter- 
part of (17) 

E(Yk) <1+ b* + rZ E*(b) 
(17*) 13a-rL[ 3~ + *2-r2J t + -r 

+ Y (1 + r) + a + 
r 

E(yk+l) 

Proceeding again as in the evaluation of E* (:), the last inequality ultimately yields: 

(18*) Es(y _ r{( _ r[1 +(322 ]+ Y (1 + - r2)+ 1 a 

+ (a as3* E*(b). +(I3* - r)2 

It will be convenient to rewrite the last equation in the form 

(19) E*(y) = So(r) + b*Si(r) + YS2(r) + ZS3(r) + E*(b)S4(r) 

where 

So(r) = 3* + (3* 
( -r 3*r) 2 

#*2 
S, (r)-(d _r)2(#*2 -r) 

(20) S2(r) = * r(1 + r" ) 

r#2 
S3(r) = - )2( 2 - 2) C rS1(r) 

S4(r)= ((3 - 
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In (19) in conjunction with (20) we have an upper bound of the round-off errors 
in the values of the yk's-the solutions of Ay = b. In case the bk's are exact we 
must of course put E*(b) = 0. 

To test the formula (18*) the exact components of b were computed from 
Ay = b where A is a 20 X 20 tridiagonal matrix of the type above considered 
with r = 1 and r = 2 and the 20 components of y were arbitrarily assigned; the 
values of the components were then calculated by the above algorithm in terms 
of the exact values of bk. The computations were carried to eight decimals. The 
maximum discrepancy between the exact values of the Yk's and the corresponding 
computed values was two units in the last place. The upper bound of the round-off 
errors evaluated from (19) in conjunction with (20) was eight units in the last 
place in the case r = 1 and seven units in the last place in the case r = 2. The 
estimated upper bounds of the round-off errors must be considered as indeed very 
close to the actual round-off errors. 

The writer wishes to express his appreciation to Roy Steeves who carried out 
the above-mentioned test. 
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